Euler’s Constancy

5 10 2007
euler

John Derbyshire in The Wilson Quarterly

Marion and Dunham were paying tribute to the mathematician Leonhard Euler (1707–83), one of the great yet little-known figures from Europe’s Age of Enlightenment. Euler’s discoveries continue to influence such disparate fields as computer networking, harmonics, and statistical analysis, and they did nothing less than transform pure mathematics. Children still learn Euler’s lessons in school. It was Euler, for instance, who gave the name i to the square root of –1. To mark his tercentenary, admirers are holding symposiums, concerts, and a two-week Euler tour, which will stop in St. Petersburg and Berlin, the two cities where he spent his working life, as well as Basel, Switzerland, the city of his birth. There is even an Euler comic book, A Man to Be Reckoned With, in German and English editions.

Compared to Gauss and Newton, both of whom published sparingly, Euler was prolific. This makes the assignment of precedence somewhat subjective. But Archimedes and Newton can hardly be excluded from the top ranks. For sheer breadth and quality of mathematical thought, I believe most scholars would place Gauss ahead of Euler. It is a close call, though, and nobody would disagree that Euler ranks with the crème de la crème in mathematical excellence. So who was he?

More here.

Advertisements

Actions

Information

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




%d bloggers like this: